Vous voulez vous familiariser avec la reconnaissance d'image?  Grâce à Tensorflow et à un Raspberry Pi, vous pouvez commencer immédiatement.

Premiers pas avec la reconnaissance d'images à l'aide de TensorFlow et de Raspberry Pi

Publicité TensorFlow est la bibliothèque du réseau de neurones de Google. Étant donné que l'apprentissage automatique est la chose la plus en vogue actuellement, il n'est pas surprenant que Google compte parmi les leaders de cette nouvelle technologie. Dans cet article, vous apprendrez à installer TensorFlow sur le Raspberry Pi et à exécuter une classification simple d'images sur un réseau de neurones pré-formé. Commencer

Publicité

TensorFlow est la bibliothèque du réseau de neurones de Google. Étant donné que l'apprentissage automatique est la chose la plus en vogue actuellement, il n'est pas surprenant que Google compte parmi les leaders de cette nouvelle technologie.

Dans cet article, vous apprendrez à installer TensorFlow sur le Raspberry Pi et à exécuter une classification simple d'images sur un réseau de neurones pré-formé.

Commencer

Pour commencer à reconnaître les images, vous aurez besoin d’un Raspberry Pi (n’importe quel modèle) et d’une carte SD avec le système d’exploitation Raspbian Stretch (9.0+) (si vous débutez avec le Raspberry Pi, utilisez notre guide d’installation).

Démarrez le Pi et ouvrez une fenêtre de terminal. Assurez-vous que votre Pi est à jour et vérifiez votre version de Python.

 sudo apt-get update python --version python3 --version 

Vous pouvez utiliser à la fois Python 2.7 ou Python 3.4+ pour ce tutoriel. Cet exemple concerne Python 3. Pour Python 2.7, remplacez Python3 par Python et pip3 par pip tout au long de ce didacticiel.

Pip est un gestionnaire de paquets pour Python, généralement installé en standard sur les distributions Linux.

Si vous ne le possédez pas, suivez les instructions d'installation pour Linux. Comment installer PIP Python sous Windows, Mac et Linux Comment installer PIP Python sous Windows, Mac et Linux De nombreux développeurs Python s'appuient sur un outil appelé PIP pour: Python pour rendre tout plus facile et plus rapide. Voici comment installer Python PIP. Lisez plus dans cet article pour l'installer.

Installation de TensorFlow

L'installation de TensorFlow était un processus assez frustrant, mais une mise à jour récente le rend incroyablement simple. Bien que vous puissiez suivre ce didacticiel sans aucune connaissance préalable, il vaut peut-être la peine de comprendre les bases de l’apprentissage automatique avant de l’essayer.

Avant d'installer TensorFlow, installez la bibliothèque Atlas .

 sudo apt install libatlas-base-dev 

Une fois que cela est terminé, installez TensorFlow via pip3

 pip3 install --user tensorflow 

Cela installera TensorFlow pour l'utilisateur connecté. Si vous préférez utiliser un environnement virtuel Apprenez à utiliser l'environnement virtuel Python Apprenez à utiliser l'environnement virtuel Python Que vous soyez un développeur Python expérimenté ou que vous commenciez à vous lancer, il est essentiel d'apprendre à configurer un environnement virtuel. Projet Python. Lisez plus, modifiez votre code ici pour refléter cela.

Test de TensorFlow

Une fois qu'il est installé, vous pouvez vérifier s'il fonctionne avec l'équivalent TensorFlow du monde Hello, !

À partir de la ligne de commande, créez un nouveau script Python à l'aide de nano ou de vim (si vous ne savez pas lequel utiliser, ils ont tous deux des avantages) et nommez-le facilement.

 sudo nano tftest.py 

Entrez ce code, fourni par Google pour tester TensorFlow:

 import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello)) 

Si vous utilisez nano, quittez en appuyant sur Ctrl + X et sauvegardez votre fichier en tapant Y à l'invite.

Exécutez le code depuis le terminal:

 python3 tftest.py 

Vous devriez voir «Bonjour, TensorFlow» imprimé.

Si vous exécutez Python 3.5, vous recevrez plusieurs avertissements d'exécution. Les didacticiels officiels de TensorFlow reconnaissent que cela se produit et vous conseillent de l'ignorer.

TensorFlow et Python3.5 - Erreur ignorable

Ça marche! Maintenant, faites quelque chose d'intéressant avec TensorFlow.

Installation du classificateur d'images

Dans le terminal, créez un répertoire pour le projet dans votre répertoire personnel et naviguez-y.

 mkdir tf1 cd tf1 

TensorFlow a un référentiel git avec des exemples de modèles à essayer. Clonez le référentiel dans le nouveau répertoire:

 git clone https://github.com/tensorflow/models.git 

Vous souhaitez utiliser l'exemple de classification des images, qui se trouve dans models / tutorials / image / imagenet . Naviguez maintenant vers ce dossier:

 cd models/tutorials/image/imagenet 

Le script de classification d’image standard s’exécute avec l’image fournie d’un panda:

Petit Panda TensorFlow

Pour exécuter le classificateur d'image standard avec l'image panda fournie, entrez:

 python3 classify_image.py 

Cela transmet une image d'un panda au réseau de neurones, qui renvoie des suppositions sur la nature de l'image avec une valeur pour son niveau de certitude.

TensorFlow Panda Classifiant la sortie

Comme le montre l'image de sortie, le réseau de neurones a bien deviné, avec une certitude de près de 90%. Elle pensait également que l’image pouvait contenir une pomme à la crème, mais elle n’était pas très confiante avec cette réponse.

Utiliser une image personnalisée

L'image du panda prouve que TensorFlow fonctionne, mais ce n'est peut-être pas surprenant, étant donné l'exemple fourni par le projet. Pour un meilleur test, vous pouvez donner votre propre image au réseau neuronal pour la classification.

Dans ce cas, vous verrez si le réseau neuronal TensorFlow peut identifier George.

George le dinosaure

Rencontrez George. George est un dinosaure. Pour alimenter cette image (disponible ici sous forme de recadrage) dans le réseau neuronal, ajoutez des arguments lors de l'exécution du script.

 python3 classify_image.py --image_file=/home/pi/george.jpg 

Le fichier image_fichier = après le nom du script permet d'ajouter n'importe quelle image par chemin. Permet de voir comment ce réseau de neurones a fait.

Résultat de la classification de dinosaure TensorFlow

Pas mal! Bien que George ne soit pas un tricératops, le réseau neuronal a classé l’image comme étant un dinosaure avec un degré de certitude élevé par rapport aux autres options.

TensorFlow et Raspberry Pi, prêts à partir

Cette implémentation de base de TensorFlow a déjà du potentiel. Cette reconnaissance d'objet se produit sur le Pi et ne nécessite aucune connexion Internet pour fonctionner. Cela signifie qu'avec l'ajout d'un module de caméra Raspberry Pi et d'une unité de batterie adaptée à Raspberry Pi, l'ensemble du projet pourrait devenir portable.

La plupart des tutoriels ne font qu'effleurer la surface d'un sujet, mais cela n'a jamais été aussi vrai que dans ce cas. L'apprentissage automatique est un sujet incroyablement dense.

Pour approfondir vos connaissances, vous pouvez suivre un cours spécifique. Ces cours d’apprentissage automatique vous prépareront un cheminement de carrière. Ces cours d’apprentissage automatique vous prépareront un cheminement de carrière. Ces excellents cours d’apprentissage automatique vous aideront à comprendre les compétences requises pour commencer une carrière dans l'apprentissage machine et l'intelligence artificielle. Lire la suite . En attendant, initiez-vous à l'apprentissage machine et au Raspberry Pi avec ces projets TensorFlow, vous pouvez l'essayer vous-même.

En savoir plus sur: Google TensorFlow, Reconnaissance d'images, Raspberry Pi.